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Abstract—Learning depth from a single image is an important
issue in computer vision. To solve this problem, encoder-decoder
architect is usually employed as a powerful architecture to learn
the dense corresponding function. In this work, we propose a
symmetrical Spindle network of the encoder-decoder to learn
the fine-grained depth. Unlike traditional convolution neural
network, we first boost up the feature maps from low-dimension
space to a high-dimension space, then extract the features for
monocular depth learning. In order to overcome limitation of
the computer memory, a single image super-resolution technique
is proposed to replace the boosting process by fusing local
cues in edge direction. Given the super-resolution images, the
monocular depth learning needs more global information than
most architectures for pixel-wise predictions. To address this
issue, dilation kernel method is proposed to enlarge the receptive
field in each layer. For the task of the super-resolution, the
proposed method achieves better performance than the state-of-
the-art methods. Extensive experiments on the monocular depth
inference demonstrate that the Spindle network could achieve
comparable performance on the NYU and Make3D datasets,
compared with the state-of-the-art algorithms. The proposed
method reveals a new perspective to learn the depth from a single
image, which shows a promising generality to other pixel-wise
prediction problems.

I. INTRODUCTION

Learning depth from a single image is one of the dense
prediction problems, which assign a label to each and every
single pixel in the image. Most of the pixel-wise inference
tasks are built upon winning architectures of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC), often
initializing their networks with Alex, VGG, or ResNet.

Howeyver, the architectures of the Alex, VGG and ResNet
are the extension of the digit-recognition network [18], which
selects the invariant abstract features for high-level problems.
For pixel-wise predictions, due to the limitation of the above
architectures, transfer learning methods are usually taken
to transfer the feature maps from high-level problems to
pixel-wise predictions, which can be categorized as indirect
methods. For these indirect methods, in order to remedy the
limitations of the architectures, encoder-decoder networks are
exploited to reconstruct predictions, as illustrated in monocular
depth estimation [17], [31], [14]. For the sake of fine-grained
predictions, the techniques of fusing middle-level features are
utilized by the skip connection, and multi-scale side outputs
are taken as supervised information.
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Fig. 1. Network architecture for our proposed Spindle network.

In this paper, we want to explore, from the architectures
viewpoint, whether there exists a direct method to predict
fine-grained depth without encoder-decoder. Inspired by the
intuition, we propose a novel symmetrical structure of the
encoder-decoder, Spindle-Net, to learn depth from a single
image, as shown in Figure 1. The Spindle-Net consists of two
modules, one is to embed the high-dimension feature maps,
and the other is to extract feature maps for depth learning from
a single image. Due to the limitation of computer memory,
we replace the embedding part with single image super-
resolution technique as a trade-off. Here, we take Laplacian
pyramid super-resolution method to predict the image at
4x resolution with two pyramid levels. In order to obtain
a complete structure in high resolution space, we propose
a direction sensitive algorithm (DsSRN) to fuse long-range
local cues in edge direction. Through experiments on the
datasets of monocular depth inference, the DsSRN achieves
a better performance than the LapSRN [16] on quantitative
and qualitative evaluations.

With the super resolution image from the embedding SR
network, our goal in next stage is to extract more global
information than the most recent pixel-wise models. Currently,
there exists two approaches to retrieve the global information,
one is to increase the depth of the neural network, the other
is to enlarge the receptive field in each convolution layer by
dilation convolution [2], [3]. In this study, we build depth
inference network on the ResNet [8] by removing the last three
fully connected layers. Chen et al. [3] apply atrous convolution
with a rate to replace consecutive striding. To address the
degenerate problem of the atrous convolution, we propose a
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novel approach, dilation kernel, to capture global information
more robustly than the atrous convolution. In the end, our
proposed methods achieve comparable performance, compared
with the state-of-the-art approaches.

In summary, the contributions of the paper are three-fold.
First, we propose a novel Spindle-Net to learn depth from a
single image directly, revealing a new perspective to address
the pixel-wise predictions. Second, a novel direction sensitive
method is proposed to perceive long range cues along edge
direction, which achieves competitive performance compared
with the state-of-the-art methods in super-resolution. Finally,
we propose enlarging receptive field approaches to learn depth
from a single image and obtains comparable results. The
proposed network together with all trained parameters will be
available online.

II. RELATED WORK

Learning depth from a single image has been extensively
studied in the literature, from classic machine learning ap-
proaches, to deep convolutional neural networks.

To tackle this task, classic methods [10], [26], [27], [28],
[29] usually make strong geometric assumptions that the scene
structure consists of horizontal planes, vertical walls and
superpixels, employing the Markov random field (MRF) to
inference the depth by leveraging the handcrafted features.
Non-parameter algorithms [11], [13] are another type of
classical methods for learning the depth from a single image,
relying on the assumption that the similarities between regions
in the RGB images imply similar depth cues as well. After
clustering the training dataset based on the global features
(e.g. GIST [23], HOG), these methods first perform matching
to search for the candidate RGB-D of the input RGB image
in the feature space, then, the candidate pairs are warped and
fused to obtain the final depth.

There exist two types of CNN-based approaches for the
task of depth estimation in the related references: supervised
learning approaches and unsupervised learning methods. One
of the first supervised learning methods, proposed by Eigen et
al. [5], addressed this issue by fusing the depths from the
global network and refined network. Their work later was
extended to use a multi-scale convolutional network to fully
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Fig. 3. Direction sensitive network for embedding long range features.

integrate the global and local information in a deeper neural
network [4]. Other methods to obtain the fine-grained depth
leveraged the representation of the neural network and the
inference of the CRFs. Liu et al. [20] presented a deep
convolutional neural field model based on fully convolutional
networks and a novel superpixel pooling method, combining
the strength of deep CNN and the continuous CRF into a
unified CNNs framework. Laina et al. [17] built a neural
network on ResNet, followed by designed up-sampling blocks
to obtain high resolution depth. However, the middle-level
features are not fused into the network to obtain detailed
information of the depth.

The unsupervised learning methods for depth estimation
from a single image achieved significant progress, where the
inferred monocular depth is taken as a intermediate result for
computing the reconstruction loss between two images with
large portion of overlap. By exploiting the epipolar geome-
try constraints, Garg et al. [6] first inferred the monocular
depth through photometric consistency on the stereo images.
Godard et al. [7] further enforced the consistency between
the disparity produced relative to both the left and right
images. Furthermore, Zhou et al. [31] simultaneously learned
the monocular depth and camera pose, which extends the
experimental images from stereo pairs to video sequences.
These deep learning methods are mostly built on the encoder-
decoder based neural network.

Recently, in order to remove the ambiguity between the
scene depth and the focal length, He et al. [9] proposed a
novel deep neural network to infer the fine-grained monocular
depth from both the fixed- and varying-focal-length datasets.
The extensive experiments demonstrate that the embedding
focal length is able to improve the depth learning accuracy
from single images.
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III. SPINDLE-NET

The proposed Spindle-Net is conceptually natural and in-
tuitive. As shown in Figure 1, the structure consists of two
modules, one is used to boost up feature maps from low-
dimension space to a high-dimension space; and the other is
used to extract features for the task of learning depth from
a single image. In the following, we will introduce the key
principle and elements of the Spindle-Net in details.

A. Embedding SR

The spatial resolution of the feature maps is important
for inferring fine-grained depth, including other pixel-wise
predictions. First, we extract high-dimension spatial features,
rather than decreasing the resolution by striding convolution
and pooling operations. By considering the limitations of the
memory and load in computer, the width of the feature map
should not be too large. For the task of the monocular depth
inference, we set the channel number of the feature map to 3,
and exploiting the super-resolution technique to simplify the
process for embedding the high-dimension spatial features.

We utilize a deep neural network to learn single image
super-resolution based on the Laplacian pyramid framework,
like the LapSRN [16], taking a low resolution (LR) image as
input and progressively predicts residual images through on
each pyramid level, as shown in Figure 2. In order to enlarge
the receptive field of the high frequency features, Lai et al. [16]
employed many recursive blocks in every level. Although
parameters sharing across blocks and local skip connection
is explored, the recursive convolutions in each block greatly
increases the structural and training complexities. Due to the
same parameters in each convolution, the receptive field of
recursive convolutions is computed as following.

RF = (K size

where K;.. is the size of the convolution kernel, IV is the
number of the convolution, and RF' is the receptive field in
the IN-th layer.

In order to further enlarge the receptive field and preserve
structure, we propose a direction sensitive network (DsSRN)
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Fig. 5. The Neural Network Architectures of Convolution, Dilation Convo-
lution and Dilation Kernel.

to replace the embedding features unit, which consists of four
parallel blocks, as shown in Figure 3. Each block implements
three convolutions with overlap simultaneously, which is dis-
tributed horizontally, vertically, and diagonally, respectively.
Such a parallel convolution network creates a receptive field
as

RE = (3Ksize —2v - 1)(N - 1) +3Ksize — 27 (2)

where vy is the overlap rate between two neighbor kernels in
each block.

In the following experiments, we set the overlap rate to 2.
Obviously, the kernel direction network is able to extract more
global residual image than the above network. Together with
the neck structure to reduce the channel number of the feature
maps, the proposed network has approximately same number
of parameters as the feature embedding part in the LapSRN.

B. Depth Inference

For the second part of the Spindle-Net, we first design
modules based on going deeper network [3]. As shown in
Figure 4, we duplicate several copies of the last ResNet
block, and arrange them in cascade. We utilize ResNet [8]
to learn global information, then progressively extracts fine-
grained depth by de-convolution techniques. During each de-
convolution phase, the side outputs of the ResNet are com-
bined with the corresponding feature maps. By this way, the
Spindle-Net is able to predict monocular fine-grained depth



under the guidance of the global information. To incorporate
long range information, we propose atrous convolution and
dilation kernel method only acting on the last layer of scale
5.

Then, we illustrate dilation kernel method in details. Consid-
er two-dimensional signals, for each location ¢ on the output
y and a filter w, dilation convolution [2], [3] is applied over
the input feature map x as

yli] = Y @i + - klwlk] (3)
K
where the atrous rate r corresponds to the stride with which
we sample the input signal, which is equivalent to convolving
the input & with upsampled filters produced by inserting r — 1
zeros between two consecutive filter values along each spatial
dimension. Standard convolution is a special case for the rate
r=1.
By the same formulation, the output y of the dilation kernel
method is as following:

ylil => > @i +r-k+ jlwlk + 4] @)
k j

where j is the element-wise location of the sub-convolution
in the dilation kernel.

In principle, dilation kernel is an intuitive extension of the
dilation convolution, by replacing each element of dilation
convolution with convolution kernel, which is critical for
robust extraction of the global information, as shown in
Figure 5. Obviously, the dilation convolution is a special case
of the dilation kernel when the elements of sub-convolution is
reduced to one.

C. Loss Function

Super-Resolution. Let x r be the input LR image and 6
be the set of network parameters to be optimized. Our goal
is to learn a mapping function f to generate an HR image
zpr = f(xLgr,0) that approaches the ground truth HR
image . By utilizing the bicubic downsampling method,
xR is resized from the ground truth xgr at each level.
Like in Lai et al. [15], [16], we use the Charbonnier penalty
function [1] as loss function.

Depth-Inference. We formulate the task of depth prediction
from monocular RGB input as the problem of learning a
non-linear mapping D = f(I,0) from the image I to the
output depth D. The parameters 6 of the proposed network are
learned through minimizing the loss function defined on the
prediction and the ground truth. Following Laina et al. [17],
we take the following BerHu loss as the error function by
integrating the advantages of both the L2 norm and L1 norm,
resulting in accelerated optimization and detailed structure.

ly — 7 ly =7l <c
By —79) = —7)2+c? _ (5
gre gl >c

where ¢ = 0.05max;(|y; — J;|), and ¢ indexes the pixels in
the current batch.

IV. EXPERIMENTS

To demonstrate the effectiveness and evaluate the perfor-
mance of the proposed Spindle-Net, we carry out comprehen-
sive experiments on two publically available datasets: NYU
v2 [22], Make3D [27]. In the following subsections, we report
the details of our implementation and the evaluation results.

A. Experimental Setup

Datasets. The NYU Depth v2 [22] consists of 464 scenes,
captured using Microsoft Kinect. Followed by the official
split, the training dataset is composed of 249 scenes with
the 795 pair-wise images, and the testing dataset includes
215 scenes with 654 pair-wise images. In addition, the raw
dataset contains 407,024 new unlabeled frames. For data
augmentation, we sample equally-spaced frames out of each
raw training sequence, and further align the RGB-D pairs by
virtue of the provided toolbox, resulting in approximately 4k
RGB-D images. Then, the sampled raw images and 795 pair-
wise images are online augmented by Eigen et al. [5]. The
input images and the corresponding depths are simultaneously
transformed using small scaling, color transformations and
flips with a chance of 0.5. Due to the hardware limitation,
we down-sample the original frames from the size 640 x 480
pixels to 120 x 90 as the input to the network, 240 x 180 and
480 x 360 as supervisory information for super-resolution.

The Make3D dataset [27] contains 400 training images and
134 testing images of outdoor scenes, generated from a custom
3D laser scanner. While the depth map resolution of the ground
truth is only 305 x 55, not matching the corresponding original
RGB images with 1704 x 2272 pixels, we resize all RGB-D
images to 345 x 460 by preserving the aspect ratio of the
original images. Due to the neural network architecture and
hardware limitations, we subsample the resolution of the RGB-
D images to 80 x 112 as the input to the network, 160 x 224
and 320 x 448 as supervisory information for super-resolution.

Evaluation Metrics. For quantitative evaluation, we report
errors obtained with the following extensively adopted error

metrics.
lyi —y; |

*

Yi

o Average relative error: rel = % > yi€|N|
i
o Root mean squared error:

rms = \/ﬁ Zyi€|N| lyi — yil?

e Average logig error: log,, =

logio(y;)|

e Accuracy with threshold ¢: percentage (%) of y; subject

to maz(y, %) =6 < #(t € [1.25,1.25%,1.257%])
where y; is the estimated depth, y; denotes the corresponding
ground truth, and N is the total number of valid pixels in all
images of the validation set.

Implementation Details. We use TensorFlow deep learning
framework to implement the proposed network, and train the
network on a single NVIDIA GeForce GTX TITAN with
12GB memory. The objective function is optimized using the
Adam method [12]. During the initialization stage, weight
layers of the RseNet are initialized using the corresponding
model pre-trained on the ILSVRC [25] dataset for image

N Lyiein [logio(yi) —
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Fig. 6. Visual comparison for 4x SR on the NYU dataset. Each image in
last row is a local zoom, corresponding to the green area in the fourth row.

classification. The weights of other added network are assigned
by sampling a Gaussian with zero mean and 0.01 variance, and
the learning rate is set at 0.0001. Finally, our model is trained
with a batch size of 8 for about 40 epochs. The first 20 epochs
are trained for the super-resolution, and the rest 20 epochs are
used to fine tune the depth inference network with fixing the
super-resolution parameters.

B. SR evaluation

First, we compare the proposed DsSRN method with the
state-of-the-art LapSRN [15] on the NYU dataset [22] and
Make3D dataset [27]. We evaluate the SR results with three
widely used image quality metrics: PSNR, SSIM, IFC, and
compare performance on 4x SR.

TABLE 1
QUANTITATIVE EVALUATION OF THE SR ALGORITHM.
NYU Make3D
Methods PSNR | SSIM | IFC | PSNR | SSIM | IFC
LapSRN [15] | 2222 | 0.601 | 1.962 | 2333 | 0.573 | 1392
DsSRN 2265 | 0.615 | 2.078 | 23.38 | 0571 | 1471

The quantitative results of the NYU dataste are reported
in Table I. Our DsSRN achieves better performance than the
LapSRN method, which demonstrates our proposed method
is not only able to learn more robust and similar structural
super-resolution image, but also correlated well with human
perception of image super-resolution. For the Make3D dataset,
our proposed approach performs better than the LapSRN
method in terms of the PSNR and IFC metrics, but a slightly
weak on the SSIM metric, as shown in Table I. This is because
there exist mess trees with clutter leaves in the Make3D

TABLE II
DEPTH RECONSTRUCTION ERRORS ON THE NYU DEPTH DATASET.

Error Accuracy
Method vel | rms | logyy | 1.25 | 1.252 | 1.257
Karsch er al. [11] | 0374 | 1.12 | 0.134 | 0447 | 0.745 | 0.897
Liu ef al. [21] 0335 | 106 | 0.127 | - - ;
Li et al. [19] 0232 | 0.821 | 0.094 | - ; ;
Liu ef al. [20] 0230 | 0.824 | 0.095 | 0.614 | 0.883 | 0.975
Wang er al. [30] | 0220 | 0.745 | 0.094 | 0.605 | 0.890 | 0.970
Eigen ef al.[5] 0215 | 0907 | - | 0611 | 0.887 | 0971
R. and T. [24] 0.187 | 0744 | 0078 | - ; ;
E. and F. [4] 0.158 | 0.641 | - | 0769 | 0.950 | 0.988
Lai [17] 0.129 | 0.583 | 0.056 | 0.801 | 0.950 | 0.986
Ours-AC 0.295 | 0.600 | 0.112 | 0.488 | 0.877 | 0.967
Ours-DK 0.260 | 0.587 | 0.105 | 0.547 | 0.885 | 0.967

dataset, which lacks of structural information on the feature
representations, compared to the indoor images.

In order to show the realistic of the super-resolution image,
we make visual comparisons on the NYU dataset for 4x SR in
Figure 6. Our method (DsSRN) accurately reconstructs high-
quality HR images, approaching to ground truth in visualiza-
tion. In addition, the proposed method can reconstruct parallel
straight lines more accurate than the LapSRN, benefiting from
large local perception in edge direction.

C. Depth analysis

We then experiment with monocular depth inference module
with atrous convolution and dilation kernel method respective-
ly. In the first series of experiments we focus on the NYU
v2 dataset [22]. The results of our comparisons are reported
in Table II. It is evident that the model with the dilation
kernel achieves better performance than the one with the atrous
convolution.

The proposed method is compared with the state-of-the-
art approaches. Here, the results of other algorithms are from
the reports of the original papers. The comparative results
of the proposed approaches and baselines are also reported
in Table II. The performance of our proposed method is
comparable with most state-of-the-art approaches. However,
the proposed method is slightly weak than the approach [17]
with the best performance. The main reason is that the
input image of the proposed method is generated from the
low resolution (LR) images, other than the original high-
resolution images used by the state-of-the-art methods. The
LR image may lack detailed structure, and as a result, its
super-resolution image is not able to reconstruct more accurate
depth than the HR image. If all approaches are inputted with
the same LR images, the proposed approach will definitely
outperform others due to the super-resolution module. We will
study which resolution is more suitable for the input in the
stage of the super-resolution. Furthermore, the experiments
have shown weakness about the strategy by embedding high-
resolution features with the single image super-resolution, we
will investigate other methods to boost up feature maps in the
future, such as exploiting semantic information.



TABLE III
DEPTH RECONSTRUCTION ERRORS ON THE MAKE3D DEPTH DATASET.

Method Error (lower is better)
rel rms logg
Karsch et al. [11] 0.355 9.20 0.127
Liu et al. [21] 0.335 9.49 0.137
Liu et al. [20] 0.314 8.60 0.119
Li et al. [19] 0.278 7.19 0.092
Roy and Todorovic [24] | 0.260 | 12.40 | 0.119
Lai [17] 0.176 | 4.46 0.072
Ours-AC 0.226 3.40 0.074
Ours-DK 0.217 6.79 0.080

In addition, the proposed model is also evaluated on the
Make3D dataset [27]. Following [4], [17], the error metrics
are computed on the regions with ground truth depth maps
less than 70m. The experimental comparisons are reported
in Table III. Our proposed method achieves outstanding per-
formance on root mean squared (rms) metric, while shows
comparable performance on other two metrics. Please note
that proposed approach is working with low resolution images,
while others are using full resolution. In this dataset, the
atrous convolution method performs better than the dilation
kernel approach. We think that the size of sub-convolution
in dilation kernel and its location in the network should be
taken into consideration. In the future, in order to improve the
performance of the dilation kernel, the size, shape and location
of the proposed dilation kernel should be explored in the
hierarchical network architecture for pixel-wise predictions.

V. CONCLUSION

In this paper, we have proposed a deep convolutional
network, Spindle-Net, to learn depth from a single image.
The idea provides a new perspective to address the pixel-wise
predictions. We have presented a comprehensive evaluation on
various design choices. During the super-resolution phase, in
order to perceive long range cues in edge direction, we propose
a novel direction sensitive method, which achieves outstanding
performance. Furthermore, we extended the atrous convolution
and proposed a novel dilation kernel approach to robustly
capture the global information. We have shown the promising
results of the proposed Spindle-Net in the context of learning
depth from single images. The network design is novel and has
great potential for other pixel-wise predictions. The proposed
network with trained parameters will be available on the
author’s website.
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